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Exercise 7

In Exercises 5-8, derive the general solution of the given equation by using an appropriate change
of variables, as we did in Example 3.
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Solution

Make the change of variables, α = x+ 2t and β = x− 2t, and use the chain rule to write the
derivatives in terms of these new variables.
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The PDE then becomes

2 =
∂u

∂t
− 2

∂u

∂x

=

(
2
∂u

∂α
− 2

∂u

∂β

)
− 2

(
∂u

∂α
+

∂u

∂β

)
= −4

∂u

∂β
.

Divide both sides by −4.
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Integrate both sides partially with respect to β to get u.

u(α, β) = −1

2
β + f(α)

Here f is an arbitrary function. Now that the general solution to the PDE is known, change back
to the original variables.

u(x, t) = −1

2
(x− 2t) + f(x+ 2t)
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